博客
关于我
【图论】欧拉回路
阅读量:276 次
发布时间:2019-03-01

本文共 384 字,大约阅读时间需要 1 分钟。

要判断无向图是否存在欧拉回路,需要满足两个条件:

  • 连通性:图必须是连通的。
  • 度数条件:图中所有顶点的度数都必须是偶数。
  • 欧拉回路的定义是能够经过每一条边恰好一次并最终回到起点的路径。因此,图必须是连通的,否则无法形成一个闭合的路径覆盖所有边。同时,每个顶点的度数必须为偶数,因为每次进入一个顶点时必须离开一次,否则无法形成闭合路径。

    以下是实现代码的思路:

  • 初始化:设置所有顶点的度数为0,并初始化邻接表。
  • 读取输入:读取顶点数和边数,逐一添加边并更新度数。
  • 检查度数条件:遍历所有顶点,检查是否存在度数为奇数的顶点。如果有,直接返回0。
  • 连通性检查:使用深度优先搜索(DFS)遍历图,检查是否所有顶点都被访问过。如果图不连通,返回0。
  • 结果判断:如果图连通且所有顶点度数为偶数,返回1,否则返回0。
  • 这个逻辑确保了图的连通性和度数条件,能够正确判断是否存在欧拉回路。

    转载地址:http://evxx.baihongyu.com/

    你可能感兴趣的文章
    NPOI初级教程
    查看>>
    NPOI利用多任务模式分批写入多个Excel
    查看>>
    NPOI在Excel中插入图片
    查看>>
    NPOI将某个程序段耗时插入Excel
    查看>>
    NPOI格式设置
    查看>>
    NPOI设置单元格格式
    查看>>
    Npp删除选中行的Macro录制方式
    查看>>
    NR,NF,FNR
    查看>>
    nrf24l01+arduino
    查看>>
    nrf开发笔记一开发软件
    查看>>
    nrm —— 快速切换 NPM 源 (附带测速功能)
    查看>>
    nrm报错 [ERR_INVALID_ARG_TYPE]
    查看>>
    NS3 IP首部校验和
    查看>>
    NSDateFormatter的替代方法
    查看>>
    NSError 的使用方法
    查看>>
    nsis 安装脚本示例(转)
    查看>>
    NSJSON的用法(oc系统自带的解析方法)
    查看>>
    nslookup 的基本知识与命令详解
    查看>>
    NSOperation基本操作
    查看>>
    NSRange 范围
    查看>>