博客
关于我
【图论】欧拉回路
阅读量:276 次
发布时间:2019-03-01

本文共 384 字,大约阅读时间需要 1 分钟。

要判断无向图是否存在欧拉回路,需要满足两个条件:

  • 连通性:图必须是连通的。
  • 度数条件:图中所有顶点的度数都必须是偶数。
  • 欧拉回路的定义是能够经过每一条边恰好一次并最终回到起点的路径。因此,图必须是连通的,否则无法形成一个闭合的路径覆盖所有边。同时,每个顶点的度数必须为偶数,因为每次进入一个顶点时必须离开一次,否则无法形成闭合路径。

    以下是实现代码的思路:

  • 初始化:设置所有顶点的度数为0,并初始化邻接表。
  • 读取输入:读取顶点数和边数,逐一添加边并更新度数。
  • 检查度数条件:遍历所有顶点,检查是否存在度数为奇数的顶点。如果有,直接返回0。
  • 连通性检查:使用深度优先搜索(DFS)遍历图,检查是否所有顶点都被访问过。如果图不连通,返回0。
  • 结果判断:如果图连通且所有顶点度数为偶数,返回1,否则返回0。
  • 这个逻辑确保了图的连通性和度数条件,能够正确判断是否存在欧拉回路。

    转载地址:http://evxx.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现KMP搜索算法(附完整源码)
    查看>>
    Objective-C实现Knapsack problem背包问题算法(附完整源码)
    查看>>
    Objective-C实现knapsack背包问题算法(附完整源码)
    查看>>
    Objective-C实现knapsack背包问题算法(附完整源码)
    查看>>
    Objective-C实现knight tour骑士之旅算法(附完整源码)
    查看>>
    Objective-C实现knight Tour骑士之旅算法(附完整源码)
    查看>>
    Objective-C实现KnightTour骑士巡回赛问题算法(附完整源码)
    查看>>
    Objective-C实现KNN算法(附完整源码)
    查看>>
    Objective-C实现KNN算法(附完整源码)
    查看>>
    Objective-C实现KNN算法(附完整源码)
    查看>>
    Objective-C实现knuth morris pratt(KMP)算法(附完整源码)
    查看>>
    Objective-C实现knuth-morris-pratt(KMP)算法(附完整源码)
    查看>>
    Objective-C实现Koch snowflake科赫雪花曲线算法(附完整源码)
    查看>>
    Objective-C实现koch snowflake科赫雪花算法(附完整源码)
    查看>>
    Objective-C实现KPCA(附完整源码)
    查看>>
    Objective-C实现KruskalMST最小生成树的算法(附完整源码)
    查看>>
    Objective-C实现kruskal克鲁斯卡尔算法(附完整源码)
    查看>>
    Objective-C实现kth order statistick阶统计量算法(附完整源码)
    查看>>
    Objective-C实现lamberts ellipsoidal distance朗伯椭球距离算法(附完整源码)
    查看>>
    Objective-C实现largest AdjacentNumber最大相邻数算法 (附完整源码)
    查看>>