博客
关于我
【图论】欧拉回路
阅读量:276 次
发布时间:2019-03-01

本文共 384 字,大约阅读时间需要 1 分钟。

要判断无向图是否存在欧拉回路,需要满足两个条件:

  • 连通性:图必须是连通的。
  • 度数条件:图中所有顶点的度数都必须是偶数。
  • 欧拉回路的定义是能够经过每一条边恰好一次并最终回到起点的路径。因此,图必须是连通的,否则无法形成一个闭合的路径覆盖所有边。同时,每个顶点的度数必须为偶数,因为每次进入一个顶点时必须离开一次,否则无法形成闭合路径。

    以下是实现代码的思路:

  • 初始化:设置所有顶点的度数为0,并初始化邻接表。
  • 读取输入:读取顶点数和边数,逐一添加边并更新度数。
  • 检查度数条件:遍历所有顶点,检查是否存在度数为奇数的顶点。如果有,直接返回0。
  • 连通性检查:使用深度优先搜索(DFS)遍历图,检查是否所有顶点都被访问过。如果图不连通,返回0。
  • 结果判断:如果图连通且所有顶点度数为偶数,返回1,否则返回0。
  • 这个逻辑确保了图的连通性和度数条件,能够正确判断是否存在欧拉回路。

    转载地址:http://evxx.baihongyu.com/

    你可能感兴趣的文章
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    netfilter应用场景
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    NetScaler的常用配置
    查看>>
    netsh advfirewall
    查看>>
    NETSH WINSOCK RESET这条命令的含义和作用?
    查看>>
    Netstat端口占用情况
    查看>>
    Netty WebSocket客户端
    查看>>
    netty 主要组件+黏包半包+rpc框架+源码透析
    查看>>
    Netty 异步任务调度与异步线程池
    查看>>
    Netty中集成Protobuf实现Java对象数据传递
    查看>>
    netty之 定长数据流处理数据粘包问题
    查看>>
    Netty事件注册机制深入解析
    查看>>
    Netty原理分析及实战(四)-客户端与服务端双向通信
    查看>>
    Netty和Tomcat的区别已经性能对比
    查看>>
    Netty学习总结(5)——Netty之TCP粘包/拆包问题的解决之道
    查看>>
    Netty客户端断线重连实现及问题思考
    查看>>